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ABSTRACT: Theoretical study of a three-dimensional laminar bound-

ary layer is a complex problem, but it can be substantially simplified
in certain particular cases and even reduced to the solution of ordinary
differential equations.

One such particular case is the flow of a compressible gas on a stream-

line in conical external flow, The case is of considerable practical
importance because the local heat fluxes may take extremal values on
such lines,

Such flow, except for the conical case, has been examined [1-4],
and an approximate method has been given [1] on the basis of integral
relationships and a special form for the approximating functions. A
numerical solution has been given [2, 3] for such flow around an in-
finite cylinder. It was assumed in [1-3] that the Prandtl number and
the specific heats were constant, and that the dynamic viscosity was
proportional to temperature. Heat transfer has been examined [4]

near a cylinder exposed to a flow of dissociated air.

Here we give results from numerical solution of a system of ordinary
differential equations for the flow of a compressible gas in a laminar
boundary layer on streamlines in conical extemal flow, with or with-
out influx or withdrawal of a homogeneous gas. It is assumed that the
gas is perfect and that the dynamic viscosity has a power-law tem-
perature dependence,

§1, Struminskii [5] has derived the system of differential equations
for a compressible gas in a three-dimensional laminar boundary layer,
while Avduevskii [1] has given the system for the particular case of a
boundary layer on a streamline in conical external flow.

The Lameé coefficients take the following form for a conical body
in an (r, 6, z) coordinate system (in which r is distance along the sur-
face of the body from the center of conicity, © is the polar angle
(triangular wing) or angle between the meridional planes (acute cir-
cular or elliptic cone), and z {s perpendicular to the surface of the
body:

=1, by = (8) r, by = 1, (1.1)

in which¥(6) is a function whose form is determined by the geometry
of the body.

We convert 10 Crocco variables and introduce dimensionless quan-
tities as follows:

11 =p,let (1 4 al)o'aR:D‘F’Z (w1}, v =2y, W= Uy,
H o= M, 0 == PeP1, b= Welha, = Peltel [ e s
L o o b 0%
Y G, LT U0 fu=o
Py R, 0.5
s = S0 (=) (1.2)

and determine the functions Z(uy), vg(uy), Hy(uy) on a streamline
for conical external flow with transpiration of a homogeneous gas at
the temperature of the body:
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the boundary conditions being
Z'(0) = ae, v {0)y=10, Hi(0)= Hy,= const,
Z{W)=0, n{)=H((1)=1 (1.4

In (1,2)-(1.4), p is gas density, His total enthalpy, # is dynamic
viscosity, u and v are the components of the velocity vector in the
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longitudinal and transverse directions, 7, and 7, are the components
of the frictional stress in those directions, P is the Prandtl number, R
is the Reynolds number (as calculated from the flow parameters at the
external edge of the boundary layer and the coordinate 1), wy, is the
speed of transpiration, subscript e characterizes the flow at the ex~
ternal edge of the boundary layer, the subscript w relates to the wall
(surface of the body), and the subscript 1 denotes a dimensionless
quantity referred to the value at the external edge.

If the solution to (1,3) is known, the local heat flux and swess
conlponents are

T = 0.5 Peuplops = Poue® (1 + a1)?5 R7OEZ(0),
Toy = 0.5 Peuetecrz = 0.5 Poupvy cpvn’ (0),
G == PeliaHe (1 -+ ar)% R.70.5 Z (0) Hy' (0) P73, (1.5)

System (1,3) with (1.4) has been integrated numerically by the
Runge- Kutta method by means of second-order formulas, with a con-
stant integration step Aug = 0,01, The solution was derived by succes-
sive approximation, the boundary conditions at uy = 1 being obeyed
to & = 107%, The iteration was monitored via Z(0), v;(0), and H,(0},
the results being printed out when the difference between two succes-
sive approximations became less than e = 1074

The calculations were performed for the following ranges in the
characteristic parameters: 0 < cp = 0,96 (0 = Mg =11), 0= oy = =,
~1 = ¢, = +1, and 0,05 = Hpyw = 1, with oy = 108 being taken in-
stead of «, which allowed the case o be calculated without altering
the program,

It was assumed that the gas was perfect, that the Prandtl number
was constant at 0.7, and that n= 1,4, with p < %,

§2, First we consider the case oy = 0 (no transpiration),

We reduce Z(uy) to normal form by means of division by the value
at the surface, Then Z(uy)/Z(0), vi(w), and Fy(uy) take values at the
external and internal edges of the laminar boundary layer that are not
dependent on the characteristic parametels,

It was found that oy had relatively little effect on Z(uy)/Z(0) and
Hy(uy), while the deformation of these profiles in response to o and
Hyy was similar to that for planar and axially symmetric boundary
layers at zero pressure gradient.

Figure 1 shows the profile of the secondary flow for various oy with
¢y = 0 and Hyw = 0,05, For o small (M for the flow small), the pro-
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file is monotonic, but changes occur as oy increases, and the speed of
the secondary flow within the boundary layer exceeds that at the ex-
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ternal edge for oy = 0.7, Increasing Hjy tends to accentuate the
secondary fiow, and this effect increases with c. These effects are
physically expected, since the secondary flow in the boundary layer
is due to unbalance between the pressure and the centrifugal forces in
the external flow, and this unbalance increases with the speed of the
external flow, Figure 2 shows the effects of oy on the profile of the
secondary flow for Hyy = 0.05 and oo of 0 and 0.92 (the solid lines
correspond to oy = 0, while the dashed lines correspond to a4 = =),

Parameter o, scarcely influences the profile of the secondary
flow for oy small, but the effects steadily increase with o). The
secondary flow for a given o is most prominent for o = 0, The
reason for this response to ¢y is as follows. If o4 = 0, the spatial
nature of the flow makes itself felt fully in the boundaty layer, and
the secondary flow is maximized for the given o, The flow in the
boundary layer is degenerate for oy = ®, and so the secondary flow
is less than for oy = 0.
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This picture of the flow profile agrees well with with results from
numerical integration for an infinite yawed cylinder [2, 3],

We need to know Z(0), Hiw, and vy(0) as functions of Oy, O g,
and Hjyw in order to calculate the frictional resistance and heat-trans-
fer coefficients,

Figure 3 shows Z(0) as a function of o4 for given oy and for Hjw =
= 0.05 (the solid lines are for o as follows: 4) 0, §) 1, 6) =), The
Z(0) for oy = 0 decreases as oy increases in the presence of strong
heat transfer, while Z(0) and o increase together for o = 0.96.

This behavior of Z(0) arises because ¢« = 0 corresponds to an
acute circular cone at zero angle of attack, while ¢y = « corresponds
to an infinite cylinder. Increase in oy in the first case (increase in
the local M) causes reduction in the frictional resistance coefficient,
and so an increase in cy causes a decrease in Z(0) for oy = 0. The
value of Z(0) near the planar critical point (¢ = 0) in the presence
of strong heat transfer is close to the value for a planar plate and is
less than that for a cone, where the flow is sparial. Then increase in
oy for oy = 0 causes a reduction in Z(0), while increase in ¢ for oy >
> 0 accentuate$ the secondary flow, which increases Z(0) at first,

This increase ceases at a certain oy, and for oy large enough Z(0) begins
to increase with oy. As the heat transfer is reduced (H,y increased),
the point of change in the dependence moves to the left, and Z(0)
always increases with o above a certain Hyy,.

It is found that H}y is only very slightly dependent on oy (the
deviation from the mean does not exceed £0,5%), while the depen-
dence on oy is very nearly linear,

Figure 4 shows that, for oy small, oy has very liule effect on
v1(0), the effect becoming appreciable only for ag > 0.6. The be-
havior for oy > 0.4 has been described above in relation to the ve-
locity profile, The deviation from the above relation for small o4
arises because Vf(ul) > 0 near the external edge of the boundary
layer, whereas this derivative is always negative for g > 0.4. This
deviation arises from the effect of the Prandtl number P; the vj(0)
for ¢ty = 0 coincide for P = 1 and are not dependent on oy, while
vi(0) always decreases as ¢ increases for P> 1,

We calculated g and the components of 7. Figure 3 shows g =
= quw(Pe Ue He) 1 R¥P(1+ o)™ as a function of o for given oy
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with Hyy = 0.05 (the dashed lines are for ¢ as follows: 1) 0, 2) 1,
3) «), The behavior can be explained by reference to the limiting
cases (¢ equal to 0 and <),

§3. Transpiration in either sense has similar effects on the bound-
ary layer, as Fig. 5 shows by reference to the secondary-flow profile as
a function of oy for Hyy = 0,05, «; =0.94, and o4 = 0.

The effects on q and T are similar; Fig. 6 shows q; as a function
of o for fixed values of ¢y and o with Hyjyy = Q.05 (the solid line
corresponds to oy =0, the dashed line to oy = 1, and the dot-dash
line to oy = «), This shows that transpiration has effects analogous to
those of a pressure gradient., These effects arise because the ranspira-
tion alters the thickness of the boundary layer and hence the velocity
and temperature gradients, which affect 7 and q,

Inward gas flow greatly reduces the local convective heat trans-
fer, and so this provides an efficient method of protection for aircraft,
The discussion of this topic falls into two parts, In the first stage,
there is absorption of heat by the inward~flowing gas (rise from Ty
to Ty); in the second, the gas enters the boundary layer and reduces
the local convective transfer,

These two processes may be considered via the equilibrium surface
temperature of an acute circular cone of length { = 1 m {along the
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surface) and semivertex angle $ = 30" moving supersonically (M, =
= 11) at a height H = 25 km at zero angle of attack, We assume that
the surface of the body is a perfect thermal conductor, the emissivity
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coefficient being € = 0.8 and the initial gas temperature being Ty =
= 300° K. In the absence of inward transpiration, the surface tem-
perature is governed by equality of the heat fluxes and is Typ =

= 2214° K. If we neglect heat absorption due to the Leat capacity

of the gas and take o = 0.5, outward transpiration of gas at the sur-
face temperature reduces the latter to 1882° K, If we incorporate
heating of the gas from Ty = 300° K to T, we get Typ = 1500° K,
This requires a gas flow rate of only 0.68 kg/sec, This shows that
transpiration provides efficient protection. However, a detailed study
of this topic falls outside the scope of this paper,

These results apply only for a particular case, but they do provide
some qualitative general conclusions as follows,

At a copstant surface temperature and ¢y < 0, the gas flow rate
varies as Py, Wy = g lig Pe(l al)o'ﬁR}ﬂ‘s, so most of the coolant
enters the boundary layer on some initial section and takes up much
of the heat flux, while the transpiration behind this plays a relatively
minor part, In this case the surface temperature is constant throughout
the transpiration region, while elsewhere it increases somewhat,
though this rise is much less than in the absence of transpiration in the
leading section,

For a given gas flow rate and given flow parameters at the ex-
ternal edge, this aftereffect of transpiration will be maximum for
oy = 0 and zero for oy = =, since in the larter case the gas flow rate
is everywhere the same, and all sections play the same part in the
general balance. Physically, this is explained by the increase in
removal of gas from the surface by the secondary flow as ¢ increases.
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Also, the aftereffect extends laterally for oy > 0; if o = w0, the
aftereffect appears only in the direction of the secondary flow,

§4. We have seen that ¢ = 0 corresponds to an acute circular
cone at zero angle of atiack, while oy = = corresponds to an infinitely
long cylinder, These cases are of practical interest and will be ex~
amined in more detail, with particnlar attentjon to the heat transfer,

Figure 7 shows the local heat flux at the surface of a cone as the
dependence of ¢y,  R%P = q R¥E[p u H (1~ Hjy)T Y on the angle
& for various M for rapid heat transfer (Hyw = 0,05, solid lines) and
moderate heat transfer (H;,; = 0,5, dashed lines), The local transfer
increases with 9, and the flux is maximum for the limiting & at
which the gas flow remains conical,

The following correlation formula applies for the local flux for
cones with & > 10° at hypersonic speeds with Hjy, small:

0.5
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=0.842 (1 — H; ) M sin b Veos & x

, 1 ~0.12
x [[{m (1+ }—Z—M;)] . (4.1)

This formula is correct to £8%. The following table gives the
relative heat flux k = qwx/qwx=° near the critical line on an infi-
nite cylinder for Hyy, = 0.05 and various M and x.

x° 0 20 40 60 80 M,
I3 1.0 0.919 0.705 0.0425 0.0166 3
k 1.0 0.913 0.686 0.0401 0.0130 5
& 1.0 0.908 0.872 0.0381 0,0115 15
k 1.0 0,908 0.671 0.0379 0.0114 25
(cos g1 1.0 0.925 0.716 0.0420 0.0112 —

These values agree quite well with the resuits from k = (cos x)l'%,
a formula that can be used near the critical line of a yawed cylinder.
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(It has been suggested [2] that k = cos X should be used for this pur-
pose, ) It is clear that increase in X greatly reduces the local heat flux,
so the local heat flux at the leading rounded edge of a triangular wing
may be reduced by increasing X. However, it has been shown [6] by
experiment for M of 4 to 10 for the critical line on a yawed cylinder
that the laminar boundary layer becomes turbulent at a Reynolds num-
ber R* = pelie 6%/e calculated from the flow parameters at the ex-
termnal edge and for a characteristic thickness

8
0* == S piv1 (L —v1)dz.
]

This transition begins at R* = 130, and the flow is completely
turbulent for R* = 450, at which point the heat flux has increased by
a factor of 4-5, For this reason, increase in X reduces the heat flux
only within certain limits under given conditions, and X greater than
a certain limit in fact increases the heat flux on account of turbulence
in the boundary layer.

If we take the critical R* as 130, we can determine the limiting
X as a function of the flight conditions. Figure 8 shows Rop =
= P uwD/uw , in which D is the diameter of the cylinder, as a
function of the limiting x for various M with Hyy = 0,05 and oy = 0.
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If y is near the limiting value, inward transpiration may actually
increase the local heat flux on account of production of turbulence in
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the boundary layer, In that case, suctioning the gas may be advan=
tageous, since it reduces ©* and retards the onset of turbulence, which
allows the limiting X to be increased.
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